Fractal dimensions of speech sounds: computation and application to automatic speech recognition.
نویسندگان
چکیده
The dynamics of airflow during speech production may often result in some small or large degree of turbulence. In this paper, the geometry of speech turbulence as reflected in the fragmentation of the time signal is quantified by using fractal models. An efficient algorithm for estimating the short-time fractal dimension of speech signals based on multiscale morphological filtering is described, and its potential for speech segmentation and phonetic classification discussed. Also reported are experimental results on using the short-time fractal dimension of speech signals at multiple scales as additional features in an automatic speech-recognition system using hidden Markov models, which provide a modest improvement in speech-recognition performance.
منابع مشابه
A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملOn using fractal features of speech sounds in automatic speech recognition
The dynamics of air ow during speech production may often result into some small or large degree of turbulence. In this paper, we quantify the geometry of speech turbulence as re ected in the fragmentation of the time signal by using fractal models. We describe an e cient algorithm for estimating the short-time fractal dimension of speech signals based on multiscale morphological ltering and di...
متن کاملAllophone-based acoustic modeling for Persian phoneme recognition
Phoneme recognition is one of the fundamental phases of automatic speech recognition. Coarticulation which refers to the integration of sounds, is one of the important obstacles in phoneme recognition. In other words, each phone is influenced and changed by the characteristics of its neighbor phones, and coarticulation is responsible for most of these changes. The idea of modeling the effects o...
متن کاملFuzzy Clustering Approach Using Data Fusion Theory and its Application To Automatic Isolated Word Recognition
In this paper, utilization of clustering algorithms for data fusion in decision level is proposed. The results of automatic isolated word recognition, which are derived from speech spectrograph and Linear Predictive Coding (LPC) analysis, are combined with each other by using fuzzy clustering algorithms, especially fuzzy k-means and fuzzy vector quantization. Experimental results show that the...
متن کاملSpeech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 105 3 شماره
صفحات -
تاریخ انتشار 1999